Olexandr Isayev
Principal Investigator
Research Areas
Biography
Olexandr Isayev is the Carl and Amy Jones Professor in Interdisciplinary Science at Carnegie Mellon University, with appointments in the Department of Chemistry and the Department of Materials Science & Engineering. He leads a research group focused on developing machine learning methods for computational chemistry and materials science.
His research sits at the intersection of artificial intelligence, quantum chemistry, and automated experimentation, with the goal of accelerating molecular discovery and design for applications in drug discovery, materials science, and catalysis.
Education
-
Postdoctoral Fellow, Case Western Reserve University (2009–2012) Advisor: Carlos E. Crespo-Hernández
-
Ph.D. in Theoretical Chemistry, Jackson State University, Mississippi (2008) Advisor: Jerzy Leszczynski
-
M.S. in Chemistry, summa cum laude, Dnipro National University, Ukraine (2002)
Academic Positions
-
Carl and Amy Jones Professor in Interdisciplinary Science, Carnegie Mellon University (2024–Present) Appointments in Chemistry and Materials Science & Engineering
-
Associate Professor, Department of Chemistry, Carnegie Mellon University (2023–2024)
-
Assistant Professor, Department of Chemistry, Carnegie Mellon University (2020–2023)
-
Research Assistant Professor, UNC Eshelman School of Pharmacy (2017–2019)
-
Research Scientist, UNC Eshelman School of Pharmacy (2013–2016)
-
Sr. Scientist, US Army Engineering Research & Development Center (2012–2013)
Research Interests
- Machine Learning for Chemistry: Developing deep learning architectures for molecular property prediction, reaction prediction, and synthesis planning
- Neural Network Potentials: Creating accurate and transferable machine learning force fields for molecular simulations
- Generative Molecular Design: Using AI to design novel molecules with desired properties
- Reaction Prediction: Predicting chemical reactivity and synthesis routes
- Automated Experimentation: Integrating machine learning with robotic platforms for autonomous chemical discovery
Awards & Honors
- Scialog Fellow (2023)
- Air Force Research Laboratory AI Grand Challenge Winner (2022)
- Nature Communications Editors’ Choice (2021)
- ACS Emerging Technology Award (2017, 2014)
- Chemical Structure Association Trust Award (2015)
Research Impact
- Publications: 160+
- Citations: 15,000+
- h-index: 58
Professional Service
- Associate Editor, Journal of Chemical Information and Modeling, ACS (current)
- Editorial Board Member, Machine Learning: Science and Technology
- Organizer, Machine Learning in Chemical Sciences workshops
Contact
Office: Mellon Institute, Room 511A 4400 Fifth Avenue Pittsburgh, PA 15213
Phone: 412-268-3140 Email: olexandr@cmu.edu
For a complete list of publications, please visit the Publications page or Google Scholar.
Publications (29)
Generative Models as an Emerging Paradigm in the Chemical Sciences
Dylan M. Anstine, Olexandr Isayev
Journal of the American Chemical Society , Vol. 145, Issue 16, pp. 8736-8750 (2023)
Machine Learning Interatomic Potentials and Long-Range Physics
Dylan M. Anstine, Olexandr Isayev
The Journal of Physical Chemistry A , Vol. 127, Issue 11, pp. 2417-2431 (2023)
Best practices in machine learning for chemistry
Nongnuch Artrith, Keith T. Butler, François-Xavier Coudert, Seungwu Han, Olexandr Isayev, Anubhav Jain, Aron Walsh
Nature Chemistry , Vol. 13, Issue 6, pp. 505-508 (2021)
Crowdsourced mapping extends the target space of kinase inhibitors
Anna Cichonska, Balaguru Ravikumar, Robert J Allaway, Sungjoon Park, Fangping Wan, Olexandr Isayev, Shuya Li, Michael Mason, Andrew Lamb, Ziaurrehman Tanoli, Minji Jeon, Sunkyu Kim, Mariya Popova, Stephen Capuzzi, Jianyang Zeng, Kristen Dang, Gregory Koytiger, Jaewoo Kang, Carrow I. Wells, Timothy M. Willson, The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, Tudor I. Oprea, Avner Schlessinger, David H. Drewry, Gustavo Stolovitzky, Krister Wennerberg, Justin Guinney, Tero Aittokallio
Unpublished (2020)
Crowdsourced mapping of unexplored target space of kinase inhibitors
Anna Cichońska, Balaguru Ravikumar, Robert J. Allaway, Fangping Wan, Sungjoon Park, Olexandr Isayev, Shuya Li, Michael Mason, Andrew Lamb, Ziaurrehman Tanoli, Minji Jeon, Sunkyu Kim, Mariya Popova, Stephen Capuzzi, Jianyang Zeng, Kristen Dang, Gregory Koytiger, Jaewoo Kang, Carrow I. Wells, Timothy M. Willson, The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, User oselot, Mehmet Tan, Team N121, Chih-Han Huang, Edward S. C. Shih, Tsai-Min Chen, Chih-Hsun Wu, Wei-Quan Fang, Jhih-Yu Chen, Ming-Jing Hwang, Team Let_Data_Talk, Xiaokang Wang, Marouen Ben Guebila, Behrouz Shamsaei, Sourav Singh, User thinng, Thin Nguyen, Team KKT, Mostafa Karimi, Di Wu, Zhangyang Wang, Yang Shen, Team Boun, Hakime Öztürk, Elif Ozkirimli, Arzucan Özgür, Team KinaseHunter, Hansaim Lim, Lei Xie, Team AmsterdamUMC-KU-team, Georgi K. Kanev, Albert J. Kooistra, Bart A. Westerman, Team DruginaseLearning, Panagiotis Terzopoulos, Konstantinos Ntagiantas, Christos Fotis, Leonidas Alexopoulos, Team KERMIT-LAB - Ghent University, Dimitri Boeckaerts, Michiel Stock, Bernard De Baets, Yves Briers, Team QED, Yunan Luo, Hailin Hu, Jian Peng, Team METU_EMBLEBI_CROssBAR, Tunca Dogan, Ahmet S. Rifaioglu, Heval Atas, Rengul Cetin Atalay, Volkan Atalay, Maria J. Martin, Team DMIS_DK, Minji Jeon, Junhyun Lee, Seongjun Yun, Bumsoo Kim, Buru Chang, Team AI Winter is Coming, Team hulab, Gábor Turu, Ádám Misák, Bence Szalai, László Hunyady, Team ML-Med, Matthias Lienhard, Paul Prasse, Ivo Bachmann, Julia Ganzlin, Gal Barel, Ralf Herwig, Team Prospectors, Davor Oršolić, Bono Lučić, Višnja Stepanić, Tomislav Šmuc, Challenge organizers, Tudor I. Oprea, Avner Schlessinger, David H. Drewry, Gustavo Stolovitzky, Krister Wennerberg, Justin Guinney, Tero Aittokallio
Nature Communications , Vol. 12, Issue 1, pp. 3307 (2021)
High Throughput Screening of Millions of van der Waals Heterostructures for Superlubricant Applications
Marco Fronzi, Sherif Abdulkader Tawfik, Mutaz Abu Ghazaleh, Olexandr Isayev, David A. Winkler, Joe Shapter, Michael J. Ford
Advanced Theory and Simulations , Vol. 3, Issue 11, pp. 2000029 (2020)
MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows
Pavlo O. Dral, Fuchun Ge, Yi-Fan Hou, Peikun Zheng, Yuxinxin Chen, Mario Barbatti, Olexandr Isayev, Cheng Wang, Bao-Xin Xue, Max Pinheiro Jr, Yuming Su, Yiheng Dai, Yangtao Chen, Lina Zhang, Shuang Zhang, Arif Ullah, Quanhao Zhang, Yanchi Ou
Journal of Chemical Theory and Computation , Vol. 20, Issue 3, pp. 1193-1213 (2024)
Synergy of semiempirical models and machine learning in computational chemistry
Nikita Fedik, Benjamin Nebgen, Nicholas Lubbers, Kipton Barros, Maksim Kulichenko, Ying Wai Li, Roman Zubatyuk, Richard Messerly, Olexandr Isayev, Sergei Tretiak
The Journal of Chemical Physics , Vol. 159, Issue 11, pp. 110901 (2023)
Learning molecular potentials with neural networks
Hatice Gokcan, Olexandr Isayev
WIREs Computational Molecular Science , Vol. 12, Issue 2, pp. e1564 (2022)
TorchANI: A Free and Open Source PyTorch Based Deep Learning Implementation of the ANI Neural Network Potentials
Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin Smith, Adrian Roitberg
Unpublished (2020)
Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling
Filipp Gusev, Evgeny Gutkin, Maria G. Kurnikova, Olexandr Isayev
Journal of Chemical Information and Modeling , Vol. 63, Issue 2, pp. 583-594 (2023)
Prediction of protein p <i>K</i> <sub>a</sub> with representation learning
Hatice Gokcan, Olexandr Isayev
Chemical Science , Vol. 13, Issue 8, pp. 2462-2474 (2022)
OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design
Maria Korshunova, Boris Ginsburg, Alexander Tropsha, Olexandr Isayev
Journal of Chemical Information and Modeling , Vol. 61, Issue 1, pp. 7-13 (2021)
A practical guide to machine learning interatomic potentials – Status and future
Ryan Jacobs, Dane Morgan, Siamak Attarian, Jun Meng, Chen Shen, Zhenghao Wu, Clare Yijia Xie, Julia H. Yang, Nongnuch Artrith, Ben Blaiszik, Gerbrand Ceder, Kamal Choudhary, Gabor Csanyi, Ekin Dogus Cubuk, Bowen Deng, Ralf Drautz, Xiang Fu, Jonathan Godwin, Vasant Honavar, Olexandr Isayev, Anders Johansson, Boris Kozinsky, Stefano Martiniani, Shyue Ping Ong, Igor Poltavsky, Kj Schmidt, So Takamoto, Aidan P. Thompson, Julia Westermayr, Brandon M. Wood
Current Opinion in Solid State and Materials Science , Vol. 35, pp. 101214 (2025)
Simulation Intelligence: Towards a New Generation of Scientific Methods
Alexander Lavin, David Krakauer, Hector Zenil, Justin Gottschlich, Tim Mattson, Johann Brehmer, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, Carina Prunkl, Brooks Paige, Olexandr Isayev, Erik Peterson, Peter L. McMahon, Jakob Macke, Kyle Cranmer, Jiaxin Zhang, Haruko Wainwright, Adi Hanuka, Manuela Veloso, Samuel Assefa, Stephan Zheng, Avi Pfeffer
Unpublished (2022)
A critical overview of computational approaches employed for COVID-19 drug discovery
Eugene N. Muratov, Rommie Amaro, Carolina H. Andrade, Nathan Brown, Sean Ekins, Denis Fourches, Olexandr Isayev, Dima Kozakov, José L. Medina-Franco, Kenneth M. Merz, Tudor I. Oprea, Vladimir Poroikov, Gisbert Schneider, Matthew H. Todd, Alexandre Varnek, David A. Winkler, Alexey V. Zakharov, Artem Cherkasov, Alexander Tropsha
Chemical Society Reviews , Vol. 50, Issue 16, pp. 9121-9151 (2021)
DRACON: disconnected graph neural network for atom mapping in chemical reactions
Filipp Nikitin, Olexandr Isayev, Vadim Strijov
Physical Chemistry Chemical Physics , Vol. 22, Issue 45, pp. 26478-26486 (2020)
The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions
Zhen Liu, Yurii S. Moroz, Olexandr Isayev
Chemical Science , Vol. 14, Issue 39, pp. 10835-10846 (2023)
Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials
Zhen Liu, Tetiana Zubatiuk, Adrian Roitberg, Olexandr Isayev
Journal of Chemical Information and Modeling , Vol. 62, Issue 22, pp. 5373-5382 (2022)
Machine-Learning-Guided Discovery of <sup>19</sup> F MRI Agents Enabled by Automated Copolymer Synthesis
Marcus Reis, Filipp Gusev, Nicholas G. Taylor, Sang Hun Chung, Matthew D. Verber, Yueh Z. Lee, Olexandr Isayev, Frank A. Leibfarth
Journal of the American Chemical Society , Vol. 143, Issue 42, pp. 17677-17689 (2021)
Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials
Dominic A. Rufa, Hannah E. Bruce Macdonald, Josh Fass, Marcus Wieder, Patrick B. Grinaway, Adrian E. Roitberg, Olexandr Isayev, John D. Chodera
Unpublished (2020)
Machine Learning of Reactive Potentials
Yinuo Yang, Shuhao Zhang, Kavindri Ranasinghe, Olexandr Isayev, Adrian Roitberg
Unpublished (2023)
Predicting Thermal Properties of Crystals Using Machine Learning
Sherif Abdulkader Tawfik, Olexandr Isayev, Michelle J. S. Spencer, David A. Winkler
Advanced Theory and Simulations , Vol. 3, Issue 2, pp. 1900208 (2020)
A community effort in SARS‐CoV‐2 drug discovery
Johannes Schimunek, Philipp Seidl, Katarina Elez, Tim Hempel, Tuan Le, Frank Noé, Simon Olsson, Lluís Raich, Robin Winter, Hatice Gokcan, Filipp Gusev, Evgeny M. Gutkin, Olexandr Isayev, Maria G. Kurnikova, Chamali H. Narangoda, Roman Zubatyuk, Ivan P. Bosko, Konstantin V. Furs, Anna D. Karpenko, Yury V. Kornoushenko, Mikita Shuldau, Artsemi Yushkevich, Mohammed B. Benabderrahmane, Patrick Bousquet‐Melou, Ronan Bureau, Beatrice Charton, Bertrand C. Cirou, Gérard Gil, William J. Allen, Suman Sirimulla, Stanley Watowich, Nick Antonopoulos, Nikolaos Epitropakis, Agamemnon Krasoulis, Vassilis Pitsikalis, Stavros Theodorakis, Igor Kozlovskii, Anton Maliutin, Alexander Medvedev, Petr Popov, Mark Zaretckii, Hamid Eghbal‐Zadeh, Christina Halmich, Sepp Hochreiter, Andreas Mayr, Peter Ruch, Michael Widrich, Francois Berenger, Ashutosh Kumar, Yoshihiro Yamanishi, Kam Y. J. Zhang, Emmanuel Bengio, Yoshua Bengio, Moksh J. Jain, Maksym Korablyov, Cheng‐Hao Liu, Gilles Marcou, Enrico Glaab, Kelly Barnsley, Suhasini M. Iyengar, Mary Jo Ondrechen, V. Joachim Haupt, Florian Kaiser, Michael Schroeder, Luisa Pugliese, Simone Albani, Christina Athanasiou, Andrea Beccari, Paolo Carloni, Giulia D'Arrigo, Eleonora Gianquinto, Jonas Goßen, Anton Hanke, Benjamin P. Joseph, Daria B. Kokh, Sandra Kovachka, Candida Manelfi, Goutam Mukherjee, Abraham Muñiz‐Chicharro, Francesco Musiani, Ariane Nunes‐Alves, Giulia Paiardi, Giulia Rossetti, S. Kashif Sadiq, Francesca Spyrakis, Carmine Talarico, Alexandros Tsengenes, Rebecca C. Wade, Conner Copeland, Jeremiah Gaiser, Daniel R. Olson, Amitava Roy, Vishwesh Venkatraman, Travis J. Wheeler, Haribabu Arthanari, Klara Blaschitz, Marco Cespugli, Vedat Durmaz, Konstantin Fackeldey, Patrick D. Fischer, Christoph Gorgulla, Christian Gruber, Karl Gruber, Michael Hetmann, Jamie E. Kinney, Krishna M. Padmanabha Das, Shreya Pandita, Amit Singh, Georg Steinkellner, Guilhem Tesseyre, Gerhard Wagner, Zi‐Fu Wang, Ryan J. Yust, Dmitry S. Druzhilovskiy, Dmitry A. Filimonov, Pavel V. Pogodin, Vladimir Poroikov, Anastassia V. Rudik, Leonid A. Stolbov, Alexander V. Veselovsky, Maria De Rosa, Giada De Simone, Maria R. Gulotta, Jessica Lombino, Nedra Mekni, Ugo Perricone, Arturo Casini, Amanda Embree, D. Benjamin Gordon, David Lei, Katelin Pratt, Christopher A. Voigt, Kuang‐Yu Chen, Yves Jacob, Tim Krischuns, Pierre Lafaye, Agnès Zettor, M. Luis Rodríguez, Kris M. White, Daren Fearon, Frank Von Delft, Martin A. Walsh, Dragos Horvath, Charles L. Brooks, Babak Falsafi, Bryan Ford, Adolfo García‐Sastre, Sang Yup Lee, Nadia Naffakh, Alexandre Varnek, Günter Klambauer, Thomas M. Hermans
Molecular Informatics , Vol. 43, Issue 1, pp. e202300262 (2024)
Δ<sup>2</sup> machine learning for reaction property prediction
Qiyuan Zhao, Dylan M. Anstine, Olexandr Isayev, Brett M. Savoie
Chemical Science , Vol. 14, Issue 46, pp. 13392-13401 (2023)
Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence
Tetiana Zubatiuk, Olexandr Isayev
Accounts of Chemical Research , Vol. 54, Issue 7, pp. 1575-1585 (2021)
Machine learned Hückel theory: Interfacing physics and deep neural networks
Tetiana Zubatiuk, Benjamin Nebgen, Nicholas Lubbers, Justin S. Smith, Roman Zubatyuk, Guoqing Zhou, Christopher Koh, Kipton Barros, Olexandr Isayev, Sergei Tretiak
The Journal of Chemical Physics , Vol. 154, Issue 24, pp. 244108 (2021)
Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network
Roman Zubatyuk, Justin S. Smith, Jerzy Leszczynski, Olexandr Isayev
Science Advances , Vol. 5, Issue 8, pp. eaav6490 (2019)
Teaching a neural network to attach and detach electrons from molecules
Roman Zubatyuk, Justin S. Smith, Benjamin T. Nebgen, Sergei Tretiak, Olexandr Isayev
Nature Communications , Vol. 12, Issue 1, pp. 4870 (2021)